
FINAL REP 0 R T ,,i 1 I>
li_ .

Louis A. DeAcetis

Bronx Community College/CUNY

January 1991

,JF, i v. _,, t "

I:'PZT {' !Oil 5 f _.;,n
CgCL

Cooperative Agreement NCC 9-16

Research Activity No. AI.1

NASA Johnson Space Center

Engineering Directorate

Tracking and Communications Division

O ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R. T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integratedprogram of research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other researchorganizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

I!_i!-'

FINAL REPOR T

Louis A. DeAcetis

Bronx Community College/CUNY

January 1991

I
I

I

I

Cooperative Agreement NCC 9-16

Research Activity No. AI. 1

NASA Johnson Space Center

Engineering Directorate
Tracking and Communications Division

!

I

I

k

© ©
/ --_] !

Research Institute for Computing and Information Systems

University of Ho uston - Clear L ake

T'E'C'H.N.I.C.A.L R.E.P.O.R.T

!

I

I

!

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Louis A. DeAcetis of Bronx

Community College, City University of New York. Dr. T. F. Leibfried served

as RICIS research representative.

Funding has been provided by the Engineering Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Oron Schmidt, of the Communications Performance and Integration

Branch, Tracking and Communications Division, Engineering Directorate,
NASA/JSC.

The views and conclusions contained in this report are those of the author

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.

FINAL REPORT

Subcontract No. 078

RICIS Research Activity AI.I

(NASA Cooperative Agreement NCC 9-16)

Louis A. DeAcetis, Ph.D.

Bronx Community College/CUNY
Bronx NY 10453

January 1991

I. Introduction

This is a report of the activities of Dr. Louis A. DeAcetis of Bronx

Community College who served as the "Key Personnel" under a sub-

contract between the University of Houston/Clear Lake and Bronx

Community ColIege/CUNY. The period of this contract extended from

September I, 1990 to January 15, 1991. The principal work site was

NASA/Johnson Space Center, Communications and Tracking Division

(Building 44), Houston TX 77058.

The scope of the work included the areas of simulators and sim-

ulation, data acquisition and transmission, and evaluation of Ada

compilers and programming environments. In addition, Dr. DeAcetis was

to serve as a "tester/Test Manager" on the Software Support

Environment (SSE) as needed. (The SSE was not used, and therefore no

time was devoted to the latter activity).

An oral Presentation of this work was given on January 14, 1991 at

JSC to both UH/CL and NASA personnel. This report also constitutes

a summary/review of that Presentation.

2. Activity Summary

A. Bus 1553B Software Development

As part of simulator development, it was determined that some

experience with the MIL-STD-1553 bus would be useful since this

will be the primary network for data acquisition from, and command

transmission to remote equipment on Space Station Freedom.

Interface cards for use in IBM-PC compatibles were available from

ILC Data Device Corporation along with driver software written in

Microsoft C. A major aspect of the work was the development of

programs in Ada which would interface with the driver programs

written in C that were supplied by the manufacturer. Appendix A

includes the Ada specifications for a first cut at this software

interface. Although the bodies of these packages have not been

exhaustively tested and debugged as yet, the functions and

procedures indicated should serve as a basis for software

development in Ada which will interface with these cards and the

1553B bus. In addition, simulations of orbital replacement unit

(ORU) equipment can use the programs to send/receive information

over the 1553B bus, thereby more closely simulating conditions on

the space station.

B. Simulator Development

A simulation of the space-to-ground communications subsystem that

has been used in previous testbed activities was revised to

include generic elements. Appendix B contains the specifications

and bodies of Ada packages that were developed to create both an

Ada Task implementation of a simulator, and a Procedure (non-Task)

version. Examples of the use of these algorithms were presented at

an oral presentation given on January 14, 1991 at JSC, and in a

recent publication: "Using ADA tasks to simulate operating

equipment", Louis A. DeAcetis, Oron Schmidt, and Kumar Krishen,

Computers in Physics, September/October 1990.

- 1 -

2. Activity Summary (cont.)

C. Although no new Ada compilers and programming tools were presented

for evaluation during the tenure of the work, continued work with

both the Alsys and Meridian compilers under DOS further confirmed

the opinion that the current Alsys Ada environment is superior to --

the Meridian AdaVantage environment. (In particular, the space-to-

ground simulator proved too large for the Meridian compiler,

even after repeated attempts to make it fit.)

- la -

Appendix A

Ada programs to interface with C-software which drives PC-based
interface cards (from ILC Data Device Corporation) for the MIL-STD-1553B
bus. Three Package specifications are included. Package FIFTEEN_53B has

routines common to emulations of both a remote terminal (RT) and a bus

controller (BC). Packages FIFTEEN53B_RT_PROGRAMS and

FIFTEEN_53B_BC_PROGRAMS have routines specific to RT emulation and BC

emulation respectively.

-- Package FIFTEEN_53B Specifications

-- Last Update: 9:19:10 1/12/1991 LAD

-- This is a package of Ada Routines that interface with C-programs

-- supplied with the DDC 1553B PC interface cards (BUS-65517)

-- These routines are common to both a Remote Terminal and Bus Controller --

-- emulation. --

-- See Package FIFTEEN_53B_RTPROGRAMS, and --

-- Package FIFTEEN_53B_BCPROGRAMS --

-- for Packages that are specific to Remote Terminals and Bus Controller --

-- respectively, and which use this package. --

--- References:

-- 1. BUS-69008 MICROSOFT C MIL-STD-1553B DRIVER

w_

w_

RELEASE 1.52

ILC DATA DEVICE CORPORATION, July 27, 1989

2. MIL-STD-1553 Designer's Guide

Second Edition, Second Printing

ILC DATA DEVICE CORPORATION, 1988

-- IBM-XT 1553B Interface card:

_w

ml

BUS-65517 Interface Card

ILC DATA DEVICE CORPORATION

105 Wilbur Place,
Bohemia NY 11716

(516) 567-5600

(516) 563-5234 [Data Bus Applications Dept.]

-- Louis A. DeAcetis, Ph.D. --

-- Tracking and Communications Division, EE7 --

-- NASA/Johnson Space Center --
-- Houston TX 77058 --

- 2 -

with system;

package FIFTEEN_53B is

subtype WORD_COUNT_TYPE is integer range 1..32;
--Q

subtype SHARED_MEMORY_TABLE_SIZE_TYPE is integer range 0..32;
.... 0 => Table not in use

subtype ID_TYPE is integer range 0..251;
--m

subtype ADDRESS_TYPE is integer range 0..31; -- 0 not a valid address;

.... used as a flag

type IO_BUFFERING TYPE is (SINGLE,DOUBLE) ;
m_

type BUS_TYPE is (BUS_A, BUS B);

type RECEIVE_TRANSMIT_TYPE is (RECEIVE, TRANSMIT) ;
_u

type DRIVER_CONFIG_TYPE is
record

MEMORY SEGMENT : character;

BCRT CODE FILE : string(l..9);
MON CODE FILE : string(l ..8)
IMRLIB FILE

i string(1..11) ;
IDEA SYM FILE string(l..9);

INTERRUP_REQU character;
STANDARD 1553 : character;

CARD VERSION : character;

end record;

DEFAULT_SHARED_MEMORY_TABLE_SIZE : SHARED_MEMORYTABLE_SIZE_TYPE := 32;

function DDC_VERSIONS return string;

Returns a string which includes the Versions of the DDC card, -

DDC software, and the SN of the DDC card, separated by "/". -

function DEFINE_TABLE_SIZE(TABLE : ID_TYPE;

SIZE : WORD_COUNT_TYPE) return integer;

--- Define size of Shared Memory data table. Default size is equal to -
--- DEFAULT SHARED MEMORY TABLE SIZE defined in the Specifications -

--- of this--Package. The function DEFINE DEFAULT CHARACTERISTICS -

--- (which must be called before DEFINE_TABLE_SIZE) sets the default-

--- value. If default size is OK, this function need not be called. -

--- If this function is used, it will change the pointers to all

--- tables with higher values. The contents of TABLE and all of the -

--- higher tables must therefore be redefined.

- 3 -

procedure END_INITIALIZATION;

procedure HALT_ALL;

..... Place Bus Controller and/or Remote Terminal Emulations in the -

..... Halt state, and Bus Monitor as well.

procedure HALT_BCRT;

..... Place Bus Controller and/or Remote Terminal Emulations in the -

Halt state

procedure RESET_CARD(CARD_NUMBER : integer := 0;

DRIVER_CONFIG : DRIVER_CONFIG_TYPE :=

(MEMORY SEGMENT => "D',

BCRT CODE FILE => "bcrt.bin" &ascii.nul,

MON_CODE FILE => "mon.bin" &ascii.nul,

IMRLIB FILE => "imrlib.bin"&ascii.nul,

IDEA SYM FILE => "idea.sym" &ascii.nul,

INTERRUPT REQU => '2'
__ I

STANDARD 1553 => 'B',

CARD_VERSION => 'I'));

m--

--NOTE-- This procedure is not fully implemented as yet using all of the

above parameters. Use the default form, RESET_CARD, which will

invoke the program "reset idea" and accomplish the reset that way.

ALL of the above default parameters are invoked when this default
form is used.

The C-program "reset idea" requires the files:

bcrt.bin, mon.bin, imrlib.bin, idea.sym.

These names are hardcoded into "new_reset_idea". The parameters

INTERRUPT_REQU and MEMORY_SEGMENT are supplied in file "idea.cfg"

which also must be present in the directory from which driver

program is run.

procedure START_INITIALIZATION(BUFFERING : IO_BUFFERING_TYPE := DOUBLE);

function WR_I553_DATA(TABLID : ID_TYPE;

MSG : system.address;

WD CNT : WORD COUNT TYPE;

POS : WORD COUNT TYPE) return integer;

--This function is generally not accessed directly by the user.

-- It is made visible in case it may be needed. It is used by

-- programs in files PI553BBC.ADB and PI553BRT.ADB

-- (Packages FIFTEEN 53B BC PROGRAMS and FIFTEEN_53B_RT_PROGRAMS)

pragma INTERFACE(C, _I553_DATA);

pragma INTERFACE NAME(WR 1553_DATA, "_new write_data");

--pragma INTERFACE NAME(WR_I553_DATA, "_write_data");

- 4 -

-- Package FIFTEEN53B_BC_PROGRAMS Specifications

-- PI553BBC.ADB Last Update: 9:14:51 1/15/1991 LAD
_o

-- This is a Package of Ada Routines that interface with C-programs

-- supplied with the DDC 15538 PC interface cards (BUS-65517), and

-- additions thereto. C-program sources are in file 1553b_io.c

-- Routines common to both a Remote Terminal (RT) and Bus Controller (BC)

-- are in Package FIFTEEN_53B (files PI553B.ADS/B).
_t

-- This particular Package contains routines for BC definition/emulation.

mm

m.

-- References:

-- I. BUS-69008 MICROSOFT C MIL-STD-1553B DRIVER

m_

RELEASE 1.52

ILC DATA DEVICE CORPORATION, July 27, 1989

2. MIL-STD-1553 Designer's Guide

Second Edition, Second Printing

ILC DATA DEVICE CORPORATION, 1988

-- IBM-XT 1553B Interface card:

m_

BUS-65517 Interface Card

ILC DATA DEVICE CORPORATION

105 Wilbur Place,

Bohemia NY 11716

(516) 567-5600

(516) 563-5234 [Data Bus Applications Dept.]

-- Louis A. DeAcetis, Ph.D. --

-- Tracking and Communications Division, EE7 --

-- NASA/Johnson Space Center --

-- Houston TX 77058 --

- 5 -

with FIFTEEN 53B;

generic

type WORD_TYPE is (<>); -- Type of data transmitted over 1553B bus;

-- Limited to discrete for now;

package FIFTEEN_53B BC PROGRAMS is

Imm

BC RECEIVE TABLE NO : FIFTEEN 53B.ID TYPE := i;

BC TRANSMIT TABLE NO : FIFTEEN 53B.ID TYPE := i;

type IO_DATA_BUFFER_TYPE is array(FIFTEEN_53B.WORD_COUNT_TYPE range <>)

of WORD_TYPE;

procedure DEFINE BC DEFAULT_CHARACTERISTICS(

BC_ADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

TABLE_ID : FIFTEEN 53B.ID TYPE := I;

TABLE SIZE : FIFTEEN--53B.SH_RED MEMORY TABLE SIZE TYPE :=

-- FIFTEEN--53B.DEFAULT_SHARED MEMORY_TABLE_SIZE;

MINOR_FRAME_TIME : long_integer := 16#1000#)7

procedure DEFINE MESSAGE(

MESSAGE_ID : integer := I; -- 1..255; See P.30

COMM_TYPE : FIFTEEN_53BSRECEIVE_TRANSMIT_TYPE--Not complete

:= FIFTEEN_53B.TRANSMIT; -- set of choices yet

DATA_TABLE_NO : FIFTEEN_53B.ID TYPE := I;

BUS : FIFTEEN_53B.BUS_TYPE := FIFTEEN_53B.BUS_A;
TADDR : FIFTEEN 53B.ADDRESS TYPE := i;

SUBADDR : FIFTEEN 53B.ADDRESS TYPE := i;

TR RCV : FIFTEEN 53B.RECEIVE TRANSMIT TYPE

:= FIFTEEN 53B.TRANSMIT;

WORD_COUNT : FIFTEEN 53B.WORD COUNT TYPE; -- := i; default?

TIME TO NEXT_MESSAGE : long_inTeger := [6#i00#; --Was integer 1/4/91

INJECT_ERRORS : integer := 0);

function INPUT_DATA_ARRAY_FROM(

RT_ADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

SUBADDRESS : FIFTEEN_53B.ADDRESS_TYPE;
NUMBER OF WORDS : FIFTEEN 53B.WORD COUNT TYPE

:= FIFTEEN 53B.WORD COUNT TYPE'Iast;
TABLE ID : FIFTEEN 53B. ID TYPE--

:= BC RECEIVE TABLE NO;

FRAME_POSITION : integer := i;

NUMBER OF TIMES : long_integer := i;

MESSAGE_ID : integer := 1)

return IO DATA BUFFER TYPE;

--NOTE: Procedure below returns STATUS; this Function does not--

- 6 -

procedure INPUT_DATA_ARRAY_FROM(

RT_ADDRESS : in FIFTEEN 53B.ADDRESS_TYPE;

SUBADDRESS : in FIFTEEN_53B.ADDRESS_TYPE;

NUMBER OF WORDS : in FIFTEEN_53B.WORD_COUNT_TYPE :=

FIFTEEN 53B.WORD_COUNT TYPE'Iast;
INPUT BUFFER : in out IO DATA BUFFER TYPE;

T BLE ID : in FIFTEEN 53B?ID TYPE

:- BC RECEIVE_TABLE_NO;
FRAME_POSITION : in integer := I;

NUMBER_OF_TIMES : in long_integer :- I;
MESSAGE ID : in integer :I 1;

STATUS : in out integer);

--NOTE: This Procedure returns STATUS; Function above does not--

function RUN_BC(MESSAGE_POSITION : integer :- I;

NUMBER_OF TIMES : long_integer :- 1) return integer;

function TRANSMIT_DATA_ARRAY_TO(

RT ADDRESS : FIFTEEN_53B.ADDRESS TYPE;
SUBADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

MESSAGE : IO_DATA_BUFFER_TYPE;

NUMBER_OFWORDS : FIFTEEN53B.WORD_COUNT_TYPE;

FROM_DATA TABLE : FIFTEEN 53B.ID TYPE
:= BC TRANSMIT TABLE NO;

DATA_TABLE_POSITION : FIFTEEN_53B.WORDCOUNT_TYPE := I)
return boolean;

-- Use DATA_TABLE POSITION := 1 for now

procedure WRITE_I553B_DATA(TABLEID : FIFTEEN_53B.IDTYPE;

MESSAGE : IO_DATA_BUFFERTYPE;
WORD COUNT : FIFTEEN_53B.WORD_COUNT_TYPE;

POSITION : FIFTEEN_53B.WORD_COUNT_TYPE);

- 7 -

-- Package FIFTEEN_53B_RT_PROGRAMS Specifications

-- PI553BRT.ADB Last Update: 9:20:03 1/12/1991 LAD --
Q--

-- This is a package of Ada Routines that interface with C-programs --

-- supplied with the DDC 1553B PC interface cards (BUS-65517) --

-- Routines common to both a Remote Terminal and Bus Controller are in --

-- Package FIFTEEN_53B (files PI553B.ADS/B). --

-- This particular Package contains routines for RT definition/emulation. --

-- References:

m_

m_

_o

u_

m_

m_

m_

I. BUS-69008 MICROSOFT C MIL-STD-1553B DRIVER

RELEASE 1.52

ILC DATA DEVICE CORPORATION, July 27, 1989

2. MIL-STD-1553 Designer's Guide

Second Edition, Second Printing

ILC DATA DEVICE CORPORATION, 1988

-- IBM-XT 1553B Interface card:

_w

m_

m_

9_

o_

BUS-65517 Interface Card

ILC DATA DEVICE CORPORATION

105 Wilbur Place,

Bohemia NY 11716

(516) 567-5600
(516) 563-5234 [Data Bus Applications Dept.]

-- Louis A. DeAcetis, Ph.D. --

-- Tracking and Communications Division, EE7 --

-- NASA/Johnson Space Center --
-- Houston TX 77058 --

- 8 -

with FIFTEEN_53B;
generic

type WORD_TYPE is (<>); -- Type of data transmitted over 1553B bus;
-- Limited to discrete for now.

package FIFTEEN_53B RT PROGRAMS is

type ON_OFF_TYPE is (ON, OFF);

type IO_DATA_BUFFER_TYPE is array(FIFTEEN_53B.WORD_COUNT_TYPE range <>)

of WORD_TYPE;

procedure CLEAR_AND_RUN RTs(RT_ADDRESS: FIFTEEN 53B.ADDRESS TYPE := 0);

function DEFINE RT DATATABLE(

RT_ADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

SUBADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

RTCOM_DIRECTION : FIFTEEN_53B.RECEIVE_TRANSMIT_TYPE;

TABLE ID : FIFTEEN_53B.ID TYPE := 0)

return FIFTEEN_53B.ID_TYPE;

procedure DEFINE_RT_DEFAULT_CHARACTERISTICS;

function RECEIVE_DATA_FROM_BC(
USING TableId : FIFTEEN 53B.ID TYPE;

NUMBER OF WORDS : FIFTEEN 53B.WORD COUNT TYPE)

return IO_DAT--A_BUFFERTYPE;

function RECEIVE_DATA_FROMBC(AT RT ADDRESS : FIFTEEN_53B.ADDRESS_TYPE; -

-SUBADDRESS : FIFTEEN53B.ADDRESS_TYPE;

NUMBER OF WORDS : FIFTEEN 53B.WORD COUNT TYPE

return IO_DATA_BUFFER_TYPE;

function RUN_RTs return integer;

procedure SET_BUSY_STATE(RT_ADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

ON_OFF : ON_OFF TYPE := ON);

function TRANSMIT_FROM(RT ADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

SUBADDRESS : FIFTEEN_53B.ADDRESS_TYPE;

MESSAGE : IO_DATA_BUFFER_TYPE;
COUNT : FIFTEEN 53B.WORD COUNT TYPE;

POSITION , : FIFTEEN 53B.WORD COUNT TYPE := i)

return boolean;

function TRANSMIT_FROM(ID : FIFTEEN_53B.ID_TYPE;
MESSAGE : IO DATA BUFFER TYPE;

COUNT : FIFTEEN_53B.WORD_COUNT_TYPE;

POSITION : FIFTEEN_53B.WORD_COUNT_TYPE := 1)
return boolean;

procedure WRITE_1553B_DATA(TABLEID : FIFTEEN_53B.ID_TYPE;
MESSAGE : IO DATA BUFFER TYPE;

WORD COUNT : FIFTEEN_53B.WORD_COUNT_TYPE;

POSITION : FIFTEEN 53B.WORD COUNT TYPE);

_ Appendix B

Generic Ada Packages for use in simulation development. Two versions
are included, one to implement a simulator with equipment running
as independent tasks, and a second one for equipment running as
called procedures.

TASK Version Packaqe:

--Package Generic_Equipment
-- TASK Version

-- Last update: 11-02-89 LAD

--This package has Ada procedures as formal parameters and therefore

--must be instantiated with procedures which implement the transfer

--functions of the actual equipment used.

--In Particular:

-- Procedure Set OFF Values : Parameter values for equip. OFF;

-- Procedure Set, INITIAL_ON_Values: " Values for equipment just turned ON;

-- Procedure Set Running Values : " Values for equipment ON & running

generic

with procedure Set OFF Values;

with procedure Set--INITIAL ON Values;

with procedure Set_Running_Va[ues;

package GENERIC_EQUIPMENT is

task SWITCH CONTROL is

entry CLOSE_SWITCH;

entry OPEN SWITCH;

end SWITCH_CONTROL;

procedure DESTROY;

end GENERIC_EQUIPMENT;

- 10 -

package body GENERIC_EQUIPMENT is

SWITCH_IS_OPEN : boolean := true; -- Switch starts open (equip. is OFF)

task body SWITCH_CONTROL is

begin

SWITCH_OPEN_OFF:
loop

SWITCH_CLOSED_ON:

loop
SWITCH_CONTROL: --*** Switch Control Loop ***--

loop
if SWITCH IS_OPEN --Select when SWITCH_IS_OPEN:
then -- Wait for rendezvous to close it

seiect

accept OPEN_SWITCH; --Accept and ignore OPEN requests
or

accept CLOSE_SWITCH; --Where Switch is actually Closed

SWITCH_IS_OPEN := false;
Set INITIAL ON Values; --

exit SWITCH_CONTROL;
end select;

else
select

accept CLOSE SWITCH;

exit SWITCH_CONTROL;
or

accept OPEN SWITCH; --Where Switch is actually Opened
SWITCH IS OPEN := true;

exit SWITCH_CLOSED_ON;
else

exit SWITCH_CONTROL;
end select;

end if;

end loop SWITCH_CONTROL; --*** End Switch Control Loop ***--

--Should only get here if Switch is Closed/ON:

Set_Running_Values; --
delay 0.001; --delay/Reschedule;

end loop SWITCH_CLOSED ON;
--m

--Should only get here if Switch was just opened:
Set OFF Values; --

delay 07001; --delay/Reschedule;

end loop SWITCH_OPEN_OFF;

end SWITCH_CONTROL;

procedure DESTROY is --Command to abort task (for orderly shutdown)

begin
abort SWITCH CONTROL;

end DESTROY;

--Accept and ignore CLOSE requests

- ii -

_ PROCEDURE Version Packaae:

-- Package Generic_Equipment

-- Procedure Version

-- Last Update: 9:28:05 10/16/1990 LAD

-- This Package has Ada Procedures as formal parameters and therefore

-- must be instantiated with procedures which implement the transfer

-- functions of the actual equipment used. In particular:

-- procedure Set_OFF Values : Parameter values for equipment OFF

-- procedure Set_INITIAL ON Values: " values for equipment just turned ON

-- procedure Set_RUNNING_Values : " values for equipment ON & running

generic

with procedure Set_OFF_Values;

with procedure Set_INITIAL_ON_Values;

with procedure Set_Running_Values;

package Generic_Equipment is

type ON OFF RUN TYPE is (ON, OFF, RUN);

procedure SWITCH(CONTROL : in ON_OFF_RUN_TYPE);

end Generic_Equipment;

package body GENERIC_EQUIPMENT is

SWITCH IS OPEN : boolean := TRUE; -- Switch starts OPEN (equip. is OFF)

procedure SWITCH(CONTROL : in ON_OFF_RUN_TYPE) is

begin
case CONTROL is

when ON =>

if SWITCH IS OPEN = true then

SWITCH IS OPEN := false;

Set INITIAL ON Values; --

--Should only get here if switch

-- was just turned ON (closed)

--Return after setting initial valuesreturn;

end if;

when OFF => SWITCH IS OPEN := true;
m

when RUN => null;
/

end case;

if not SWITCH IS OPEN then --Should only get here if switch is Closed/ON

Set RUNNING Values; --
m

else --Should only get here if Switch is Open/OFF

Set_OFF_Values; --

end if;

end SWITCH;

end Generic_Equipment;

- 12 -

